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ABSTRACT 

Equations describing the reaction of a space vehicle to  rotating --- 
machinery a n a  to-mass-motion insi-de the vehicle a r e  formulated. 
These  equations include a component that has  been neglected in most 
e a r l i e r  studies, i. e. , the angular impulse introduced by the moving 
mass. 

The dynamics of a cylindrical space station rotating around its 
major  axis once every 1 U o n d s  a r e  evaluated numerically. The 
long cylinder provides the large distance between the axis of rotation 
and the c rew compartment needed t o  generate comfortable art if icial  
gravity. But the rotating cylinder is  known to have l i t t le dynamic 
stability around its longitudinal axis. Nevertheless ,  the stability 
charac te r i s t ics  of this configuration a r e  found to  be acceptable provided 
the re  is as l i t t le as 0. 270 asymmetry between the major  and inter-  
mediate moments of inertia.  

- 

Detailed investigations were performed on an analog computer. 
These  show the effect of path and t iming on the magnitude of the 
disturbance caused by a m a s s  relocation. 

Also analyzed in some detail a r e  ways to  minimize rol l ,  e i ther  by 
correct ive motion of the astronauts or  by a simple control sys t em 
that u ses  the gyroscopic torque generated by rotating the body-fixed 
axis of a flywheel. c .cc,G4 ?- 
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DEFINITION O F  SYMBOLS 

. 
SYMBOL 

x, Y ,  z 

x, y ,  z 

H 
- 

d 
N 

I 

I 

D 

T 

m 

- 
P 

k 

M 

r i 

DEFINITION 

Space - fixed ref e rence axes 

Euler  angles 

Body-fixed axes 

Angular impulse 

Angular velocity 

Ine rtia tensor 

Moment of inertia 

Components of angular velocity i n  
body-fixed coordinate sys tem 

Determinant 

Principal axes 

Euler  angles between principal axes  
and reference axes  

Period 

Movable mass within space 

Radius vector of movable m a s s  

Radius vector of center  of gravity in 
body-fixed coordinate sys tem 

Total m a s s  of space station 

Position vector of m a s s  point in  
s pace -fixed coordinate sy s tem 

i v  



DEFINITION O F  SYMBOLS 
(Continued) 

SYMBOL DEFINITION 

V Velocity 

h Angular impulse of rotating machinery 

P Power 

L Torque 

E Energy 

a, 8 ,  Y Euler  angles between principal axes  
and reference axes 

Subs c ript s 

C Of command 

F Of flywheel 

A dot over a symbol denotes the f i r s t  derivative with respect  
to  time. 

Two dots over a symbol denote the second derivative with 
respect  to t ime. 

A bar over a symbol denotes a vector. 

A tilde (-) over a symbol denotes a matrix.  
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SECTION I. . INTRODUCTION 

The environment necessary for the life support of as t ronauts  
during extended space flights will probably have to  include ar t i f ic ia l  
gravity. 
continuous rotation of the space station around an axis that is 
sufficiently remote f rom the c rew compartment to  exclude ex t reme 
variations in the centrifugal forces  within the compartment.  

During periods of coasting, this  will be generated by 

Our investigation will be limited to  a station of cylindrical  shape, 
since this  is the geometry most likely to be used for  ear ly  flights of 
long duration. As a further qualification, since the rotating cylinder 
is highly stable around i t s  two axes of la rge  moment of iner t ia ,  only 
the requirements  for stability around the third ax is ,  i. e. , the 
longitudinal axis ,  will be examined. 



SECTION 11. 

A. THE UNDISTURBED SYSTEM 

ANALYSIS 

In the absence of external torques,  the angular impulse of the 
sys tem remains constant. 
aligned with the Z axis of the space-fixed reference coordinate 
sys tem X, Y ,  Z (Figure 1). Using the t ransformation matrix f r o m  
the reference coordinate sys tem to the body-fixed coordinate sys tem 
expressed  in  Euler  angles qj, 8,  Y ,  we get the components of the 
angular impulse in  the body-fixed coordinate sys tem x ,  y ,  z 
(Figure 1): 

Let us a s sume  that the angular impulse is 

(1):: 

or 

The angular impulse is related to  the angular velocity by the 
vector equation 

.b -P 

Cf. F i fe r ,  Stanley, 
McGraw-Hill (1 961), 

N -  

Analogue Computation, Vol. IV, New York, 
pg. 1091 

2 
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+,e,+ AS SHOWN ARE POSITIVE ANGLES. 

Figure  1. Euler  Angles, Transformation f r o m  Reference 
to  Body-Fixed Coordinate System 
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N 

The iner t ia  tensor  I is given by a mat r ix  

. (4) 

If there  i s  no mass  motion inside the space station, the components of 
the tensor  a r e  constant in  the body-fixed coordinate system. Calling 
the components of the angular velocity in the body-fixed coordinate 
sys tem p, q, r and using equations ( 2 ) ,  the vector equation (3) can be 
wri t ten in components 

Using determinants,  equations (5) a r e  solved for  p, q, and r 

4 
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I I,; 

We now express  the angular velocities in t e r m s  of gimbal 
angles and rates:  

I 

5 



O r ,  solving for  8 ,  8, and Y ,  we get 

. 

Finally,  introducing (6) into (8), we get 

Equations (9) describe the attitude of a body with an angular impulse. 
This system of f i r s t -order  differential equations can be simplified i f  
we choose a par t icular  body-fixed coordinate system that is aligned 
with the principal axes 5 ,  q, 5. 
expressed by a diagonal matrix: 

The iner t ia  t e n s o r y  can then be 

6 0  
cv 

8 . -  

and equations (5) simplify t o  

- H  

6 



Rewriting (8) in our new notation, 

Finally,  we get 

0 

w =  
a 

c p =  

or ,  using 

- L  rn Y' 
we get 

+ 

- 

7 



F o r  rotational symmetry (I = Is) we get 
rl 

0 .  J w = Const. 
1 I .  

and 
= d 

n, = A & Y  

These equations describe the nutational motion of a cylinder of perfect 
rotational symmetry. 
with constant angular and roll velocity- -a  well-known phenomenon. 

The length axis i s  moving on a c i rcu lar  cone 

Let us now consider the case  of a body with near  rotational 
symmetry around the length axis and smal l  angle 2 : 

and 

3 

8 



Combining the f i r s t  and last of these equations, we eliminate 3 
and get 

c 

i. e. , the equation for the mathematical pendulum. 
the rotation around the 5 axis i s  stable and for  A I  negative the 
rotation around the q axis is stable, the period T increasing with 
decreasing AI. 

F o r  A I  positive 

9 



B. EFFECT O F  MASS MOTION WITHIN THE SYSTEM 

Next, how does a change in the mass  distribution inside the 
station affect the motion of the station? 
does not change because the mass motion i s  a resul t  of internal  
forces .  
body-fixed coordinate system does move and the iner t ia  tensor  
changes. 
va r i e s  with location. A mass  close to the center  of rotation has l e s s  
angular momentum than a mass  located fa r ther  out. 
that moves away f rom the center of rotation i s  accelerated,  thereby 
slowing the part  of the station it moves to. 

The total  angular impulse 

N o r  does the center of mass  move. But the origin of the 

In addition, we must remember that the angular momentum 

Thus a mass  

Let us assume that a mass  m moves f rom & to inside the 
station. Although the position vector of the center  of mass  in the 
space-fixed coordinate sys tem does not change, the location k of the 
center  of gravity in  the body-fixed coordinate system does move. 
Initially, we have 

With m moved to  the center of gravity has  moved to  k, given by 

where M i s  the total  mass  of the system. 

10 



The angular impulse H, which remains unchanged, i s  given by 

with Gi the position vector of m.  and G. the velocity of m. (relative to 
the center of mass) measured in 1 space-fixed 1 coordinates. 1 

We wri te  the equation for the angular impulse in body-fixed 
coordinate s : 

Using the formula a X (g X c )  = G(g c )  - ;(a * g), we get 

The first two t e r m s  show the effect of the m a s s  motion; the las t  two 
t e r m s ,  which depend only on the m a s s  distribution, must correspond 
with equation-(3). 
that because p i  = 0 for all mi except the moving m a s s  m ,  

Evaluating the f i r s t  two t e r m s  fur ther ,  we note 



and, according to  the definition of R, 

Therefore  the second t e r m  equals zero:  

. 

The equation for  the angular impulse is now 

The x component of fi - y  (see equation 16) is  given by 

N / 
and the other components of fi I have the corresponding form. 
use  these equations to  evaluate the iner t ia  tensor  I: 

We 
N 

12 



3 

\ 

c 
0 

cd 
.d 
c, 

;j 
Q 
0 

c, 
cd 

Q 
k 

x 

13  



and (see equation 15) 

Since the body axes a r e  the principal axes for  p = p o ,  we get 

Similarly,  we get 

Equations (17) and (18) describe the dynamics of a rotating space 
station with no external torques. 

F o r  our numerical  evaluation of equations (15), (17), and (18), we 
have used a model of a space station s imi la r  to  one proposed in-a  study 
conducted by the MSFC Propulsion and Vehicle Engineering 
Laboratory at the request of the MSFC Future  Pro jec ts  Office 
(Figure 2). 
axis of maximum moment of inertia. The r a t e  of rotation, 61,  is 
0.628 rad/sec and the crew compartment extends 12 to 18 m e t e r s  
f r o m  the center  of rotation. 

The station is nearly cylindrical  and rotates  around its 

The result ing ar t i f ic ia l  gravity, €l2 r 

14 
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ranges f r o m  0.48 g to 0.72 g. 
each a r e  f r e e  to move about in this area.  The maximum moment of 
iner t ia ,  I,, is 6 ,000 ,000  kg m'. 
length axis ,  I,, i s  112,000 kg mz .  

Three astronauts weighing 90 kilograms 

The moment of iner t ia  around the 

Several  different mass  motions were studied. Our study showed 
that a station with rotational symmetry around the length axis responds 
to m a s s  disturbances,  both small  and large,  with large roll  motions. 
This is demonstrated on Figure 3 ,  which shows the resu l t s  of a 
digital evaluation. A continuous rol l  motion i s  produced in response 
to a mass  motion f rom x = 15m,  z = Om to x = 1 5 m ,  z = 1. 8m.  The 
deflection in  0 is negligible. 
component proportional to cos qj and, according to  equation (13c), 
superimposed on this a component proportional to @. 
proportional t o  cos  @ i s  caused by the angle between the principal 
axis 5 and the body axis x.) 
an axis of intermediate moment of iner t ia ,  the rotation around this  
axis  is unstable, and because the motion (the distance of m f rom the 
center  of rotation increases)  introduces a smal l  positive initial rol l  
velocity, the rol l  motion is continuous. 

(The deflection in 8 consis ts  of a 

The component 

The mass  motion converts the z axis into 

But even a s  little a s  0. 27'0 asymmetry (i. e. , the asymmetry of 
the model used in our numerical  evaluation) is sufficient to insure 
that the ro l l  deflection in  response to a single motion i s  limited to 
l e s s  than 10'. 
o r  not a new mass  motion will increase o r  decrease  an existing 
oscillation depends on the timing of the new mass  motion.(See the 
discussion of cancellation of roll  by motion of the astronauts ,  pg. 28. ) 

However, because of the absence of damping, whether 

Another disturbance that can be considered i s  the effect of 
rotating machinery (generators ,  pumps, etc. )on board the station. We 
modify equation (17) to include the effect of rotating machinery with 
body-fixed axes: 

where h i s  the angul-ar impulse of the rotating machinery. 
in components, equation (19) becomes 

Written 



We see f rom these equations that flywheels can enforce the co r rec t  
attitude in  the steady s ta te ,  in  spite of mass  displacements. 

In the steady s ta te ,  with p, q, k, F, and k = 0,  @ and 8 can be 
reduced to  zero  i f  

We can determine the required angular impulses to do this  for  the 
maximum possible values of I and I : 

xz Y Z  

I = mxz = 270kg 18m l . 8 m  = 8,750kg m 2  
xz 

I = myz = 270 kg 1.27 m 1.27 m = 435 kg m 2  
Y Z  

Because the rol l  deflection is considerably l a rge r  than the pitch 
deflection, it i s  more  important to reduce roll. 
requires  a twenty t imes  smal le r  angular impulse. Moreover, because 
a deflection in  the rol l  orientation is l e s s  disturbing to the astronauts 
than a rol l  oscillation, only methods of limiting ro l l  oscillation were  
studied. Two methods were studied in  detail: controlled motion of 
the astronauts and automatic control by flywheels. 

Fortunately,  this  

18 



To simplify our analysis of the effect of rotating machinery with 
body-fixed axes,  we shall  assume that the body-fixed axes a r e  the 
principal axes  and that the astronauts a r e  at res t .  Equations (19) 
then become 

The magnitude of h, that can be tolerated i s  determined by the 
t ransients  it introduces into roll during s tar t ing and stopping. 

We can est imate  the initial ro l l  velocity caused by a fast start 
(assuming that 0 = 0 initially) f rom 

0 

If we limit the rol l  deflection t o  a maximum of 0. 1 rad ,  the rol l  
oscillation will be approximately sinusoidal, with the relation between 
the maximum angular velocity and the angular deflection given by 

It follows that 

This angular impulse causes  a deflection in 0 af ter  the rol l  oscillation 
is damped out: 

19 
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But, because of their  smal l  size,  0 and 6 can be neglected and we 
get for  the components of 0: 

Using these expressions,  we get 

o r  

Thus,  because H is very large,  the change in Y resulting f r o m  
rotating machinery with i t s  axis paral le l  to z can be neglected. 

Finally, for hy , we get 

Hence an angular impulse h 
Imposing the same limit  on the steady state deflection as we did on 
the rol l  oscillation, we get 

causes a steady s ta te  deflection in $. Y 

In sum, then, rotating machinery in te r fe res  least  with the 
dynamics of the rotating station when i t s  axis i s  aligned with the 
z axis of the station. 

20A 
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Figure 4. Analog Computer Program 
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SECTION III. NUMERICAL EVALUATION 

A. THE ANALOG COMPUTER'PROGRAM 

To study the behavior of equation (19), we programmed it on an 
analog computer. 
that  m << M, that the position of m in the undisturbed system is at  
ye, zo = 0, that changes in Ly 4, I, result ing f rom mass  displace- 
ments can be neglected, and that smal l  angle approximations will have 
no significant effect on the results. 

The following simplifying assumptions were made: 

We therefore  get 

The analog computer program i s  shown on Figure 4. 

The effect of a mass  displacement depends on the path and on the 
schedule of the displacement. 
station to the motion of th ree  astronauts ( 3 -  90 kg = 270 kg) f rom { l 2  m y  
0, 01 to {18m, 0, 1.  8 m ]  along three  different paths: 

Figure 5 shows the response of the 

22 
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Path I. F r o m  {12m, 0 ,  O ]  t o  {18m, 0 ,  O }  and then to [18m, 0 ,  1. 8m3 

Path 11. F r o m  {12m, O , O ]  to {18m, 0 ,  1. 8m} and then to  {18m, 0 ,  1. 8m3 

Path 111. F r o m  {12m, O , O ]  t o  [12m, 0 ,  1. 8m} and then to  {18m, 0 ,  1. 8m} 

Check runs on a digital computer show good agreement ,  indicating 
that the approximations used have no significant effect on the results.  
It follows f rom equation (13a) that the pitch amplitude is 0.007 of the 
rol l  amplitude. This too is in agreement with the computer results.  
The steady state pitch deflection can be determined f rom equation (E) 
of the Appendix, where the orientation of the principal axes  of the 
space station relative to  the body-fixed axes is described. 

24 
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B. EFFECT O F  ASTRONAUTS' MOTION 

The walking speed was assumed to be 0. 9 m/sec.  
changes in velocity realistically, a f i r s t -order  lag with a time 
constant of one second was added to  the velocity te rm.  

To simulate 

Motion in the yz plane, for example the motion of th ree  a s t ro -  
nauts f rom {18m, 0 ,  O]to {18m, l . 2 m ,  l . 2 m } ,  changes the direction 
of the principal axes q, 5 relative to the body axes and causes  a rol l  
oscillation, but the deflection in this  case  i s  only 2'. If this  t r a n s f e r  
occurs  in two phases,  for  example f rom {18m, 0 ,  0 )  to {18m,  0 ,  1. 2m3 
and then to  c1 8 m ,  1. 2 m ,  1. 2 m}, a smal l  initial rol l  velocity 
( t 2 .  5 - 
two-phase t ransfer  in a different sequence, i.e. , f rom {18m, 0 ,  O ]  to 
{18m, 1. 2 m ,  O }  and then to {18rn, 1. 2 m ,  1. 2m3,  produces a smal l  
initial rol l  velocity of the opposite sign. 

rad/sec)  i s  introduced in the second phase. The same 

Because start ing and stopping occur in t ime intervals  that  a r e  
small compared with the period of the oscillation, the effect of these 
on the rol l  amplitude can be neglected (Figure 6a-c). 

Motion in the xy plane causes no roll ,  a s  can be seen on 
Figure  6c, d. 
the spacecraft  should therefore be located in the xy plane. 

The ladder for going f rom a lower to an upper deck of 

Motion parallel  to ,  but not along, the x axis (constant z # 0) 
introduces large roll  disturbances,  mainly because of the change in 
angular momentum with distance f r o m  the center of rotation. The 
t r ans fe r  of this momentum to the roll  axis depends only on z ,  i. e . ,  
the torque generated by the Coriolis force (Figure 6e-g). 

Walking in a c i rc le  in  the yz plane (Figure 6h, i) introduces two 
disturbances:  the attitude of the principal axes relative to the body 
axes is  varied and an angular roll impulse is introduced. The f i r s t  
disturbance has  a period corresponding to the t ime i t  takes  to walk 
around half the circumference of the cylindrical station. I ts  effect 
can be seen in 8.  
station to  the initiation of c i rcular  motion by the astronauts.  

The second disturbance i s  the reaction of the 
The 

26 
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init ial  rol l  velocity that resul ts  is  given by 

The amplitude of the resultant r o l l  (T = the period of the ro l l  motion) is 
c 

All these disturbances a r e  moderate. The rol l  angle never 
exceeds 10’. 
o r  decreased depends on the phase of the recur rence  of a disturbance. 

However, whether the rol l  of the spacecraf t  is increased 

Figure 7 shows the effect of one astronaut walking synchronously 
with a rol l  oscillation. 
decay depends on the phase relation. 
u se  the astronauts  for  corrective action to  counteract ro l l  of the 
spacecraft .  Figure 7 shows the effect of motion in the x direction. 
F igure  7a repeats  the effect of rotation of the principal axes  by the 
t r ans fe r  of one astronaut f rom {18m, 0 ,  01 to {18m, 1. 27 m ,  1. 27 m}. 
Figure 7b shows again that motion in  the xy plane does not affect roll. 
F igure  7c shows a damping effect (positive z); Figure  7d shows an 
augmentation (negative z) for motion in the x direction in  phase with 0; 
Figure  7e, f shows that motion in  the x direction in phase with 4 has  
no effect. 

Whether the effect is  one of buildup o r  of 
Hence it should be feasible to  

A more  effective and convenient way to  reduce a rol l  oscillation 
is shown on Figure 8a-g. 
along, the y axis (constant z # 0) o r  paral le l  to,  but not along, the z 
axis (constant y # 0) in phase with the rol l  velocity’. 
motion in the opposite phase causes a buildup. 

Here  the motion is paral le l  to ,  but not 

The same 

’Measured as 4, i. e. , as the gimbal ra te  of the iner t ia l  platform, o r  
as p by a ra te  gyro mounted on the f r ame  of the space station. 

28 
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C. AUTOMATIC CONTROL O F  STATION’S ROLL MOTION 

As already mentioned, properly controlled variations in flywheel 
r a t e s  could be used to damp out ro l l  oscillations. 
consider the effect of a flywheel with i t s  axis paral le l  to  the x axis. 

We shall  first 

. 
F o r  simplicity, we assume that I , I , I = 0 and that the 

Y Z  astronauts a r e  not moving. 
duced by some previous disturbance. 
and equation (19) becomes, with I - I = A I  and I >> A I .  

The statigx has  a r%?l oscillation intro- 
We use  smal l  angle approximations 

Thus 
8 0  

6 

. 
and 

z 

P 0 
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This equation shows that only a rate of the angular impulse of the 
flywheel, h,, generates a torque. Thus if h., can  be var ied 
synchronously with d,  the rol l  oscillation of the station can  be 
damped. But h, cannot be used to counteract a steady-state 
deflection in 8 caused by Iyz. However, according to  Figure 6a, the 
la rges t  possible steady state deflection due to  Iyz is only 29 

Another possibility is to  use  a flywheel with its axis paral le l  to  
the y axis. Using the same approximations, we get 

We now get a damped rol l  oscillation i f  the angular impulse of the 
flywheel, hy, is var ied synchronously with -8.  
(21)  and ( Z 2 ) ,  we can see  that for an  equal damping effect 

Comparing equations 

An effective schedule for  h w a s  found to  be a l inear  i nc rease  with 
t ime followed by an instantaneous braking action. 
F igure  9. 
(T = the ro l l  period): 

This can  be seen  on 
F o r  this  schedule h,,is re la ted to h as follows Xmax 

Control by varying hy turns  out t o  be considerably more  effective. 
Figure 9 shows the performance of such a control system. 
adjustments were  made to optimize the control. 

No phase 
The simulation 
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assumes  that the flywheel' i s  driven by a motor with a combined t ime 
constant of 10 seconds. 
was assumed above, but decays during the cycle. ) 
to  the motor i s  constant; only the polarity is controlled. 
applied before the voltage is  reversed. 

(Therefore hy does not remain constant,  a s  

Brakes a r e  
The voltage applied 

Thus 

* 

The maximum required power, P, is half the maximum.torque multi- 
plied by half the maximum angular ra te ,  i. e. , 

With I, = 2 k g m 2  and hc = 100 lb f t  sec- '  = 130kgm' sec  -1 , we get 

The maximum angular ra te  is therefore  

~ 

' A hydraulic sys tem with circulating pump and valves could well be 
another feasible solution to the control sys tem problem. 
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O r ,  r a the r  than building up  an angular impulse and then wasting 
the s tored  energy by braking, we can use  a gimbal-mounted gyro with 
its axis aligned initially with the z axis (Figure 10). 
angular impulse,  
paral le l  t o  the x axis) through an angle 6: 

The required 
, is  generated by rotating the gimbal (its axis is hY 

(Is - Rs is the angular impulse of the spinning gyro. ) The other two 
components of the angular impulse generated by this  rotation a r e  

is the combined moment of iner t ia  of the gimbal and the flywheel (IC, x 
around the x axis. ) Because it is  smal l ,  the influence of these other 
two components on the motion of the station can be neglected. 

The torque generated by turning the gimbal is 

The j and k components of L, along with the centrifugal fo rces ,  
constitute the load on the gimbal - -  and spin - -  bearings. Sufficient 
power must  be provided to replace the energy dissipated by friction. 

3 4  
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. 

Because the station i s  rotating, L, # 0. Power i s  therefore  
required to turn  the gimbal: 

0 

This power builds up  potential energy: 
0 m S = S  

(q is neglected as small)  o r ,  considering r to  be independent of 6: 

This energy has  only to be built up. 
moved, the gimbal swings back to  the opposite deflection. 

A s  soon a s  the torque is r e -  

It may be advantageous to use  moderate ra tes  of rotation of the 
gyro. 
control to  be switched on and the gyro to be s ta r ted  as required.  
The s tored  kinetic energy fo r  an angular impulse,  Is - C I S ,  of 
130 kg rn2 sec- '  is ,  given that Is = 2 kg m 2 ,  

The s tored  kinetic energy would thus be smal l ,  allowing the 

E = 4250 watt s ec  
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SECTION IV. EFFECT O F  EXTERNAL TORQUES 

Still to  be mentioned a r e  the effects of external  torques. 
have not been considered in our analyses  mainly because external  
torques in space a r e  smal l  (gravity gradient, magnetic fields,  
radiation p res su re ,  drag).  They therefore  change the angular 
impulse only very slowly: 

These 

The same can be said of the impact of meteoroids. Roll motion 
result ing f rom such impacts can be damped out as it occurs  and the 
axis of rotation will be in line with the direction of the angular impulse. 

Finally, it  may occasionally be necessary  to use  je t s  to r e s to re  
and maintain the des i red  ra te  of rotation and the direction in  space of 
the axis of rotation. 

c 
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SECTION V. CONCLUSIONS 

Mass  motion in  a rotating space station of cylindrical  shape 
causes  the station to  oscillate in the ro l l  direction. 
symmetr ica l  the station is around its length axis, the l a r g e r  the 
amplitude of the ro l l  oscillation will be. 
example investigated, a difference even as small as 0. 2% between 
the moments of iner t ia  of the major and the intermediate axes  
suff ices  to keep the oscillation small. In addition, excessive ro l l  
can  be reduced by control systems using a flywheel o r  correct ive 
motion of the astronauts.  

The more  nearly 

But, as is shown by the 

3 8  



APPENDIX 

ORIENTATION O F  THE PRINCIPAL AXES O F  THE 
SPACE STATION RELATIVE TO THE BODY -FIXED AXES 

The angular impulse is  related to the angular velocity by 

F o r  H pointing in the direction of the principal axis, 

Writing this in components, 

It follows that the determinant 

3 9  



This cubic equation in  h has three roots,  XI, Xz, X f ,  which correspond 
to  Is, IT ,  15 .  
equations (B) become 

The value fo r  X closest  to 1, i s  Is. Using X, = 15, 

The first equation can be interpreted as a sca l a r  product a 
indicating that a is perpendicular to  fi with 

ii = 0 

a = ( I  - 1 ) i - I  j - I  k 
x s  XY xz 

The second equation yields a vector, 6 ,  with 

- 
b = - I  i + ( I  - 1 ) j - I  k 

XY Y 5  Y= 

The vector a X b has  the direction of the principal axis 

We can now express  the orientation of the principal axes  relative 
to  the body-fixed axes by determining the three  Euler  angles a, f3, y .  
We use  the same sequence of rotation a s  we used in  converting f rom 
the reference axes to the body-fixed axes. The z axis ag rees  with f, 
the 5 axis with d c .  W e  can therefore use the mat r ix  of equation (1): 

40 



. 

Because a X 6 has  the direction of the 5 axis, i t s  component 
i - 5 X 6 is proportional to  cos Y cos f3 and i t s  component j * 2 X E is 
proportional to  s in  y c o s  8. 
the smallest  y )  f rom 

We determine y for the < axis (selecting 

We determine B f rom 

To determine a we rewri te  equations (2) using Xz = I,,,, 

41 



and we use  the relationship 

Because 8 ,  y a r e  small ,  

42 
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